Lecture 13

Lecturer: Xiangyu Chang
Scribe: Xiangyu Chang

Edited by: Junbo Hao

1 BCD

Example 1.1. Let us consider the problem

$$
\min f(x, y)=x^{2}-2 x y+10 y^{2}-4 x-20 y .
$$

If we fix y, then $\nabla_{x} f(x, y)=2 x-4 y-4=0$, that is $\mathrm{x}=\mathrm{y}+2$. If we fix x, then $\nabla_{y} f(x, y)=20 y-2 x-20=0$, that is $y=x / 10+1$.

$$
\left\{\begin{array}{l}
x^{t+1}=y^{t}+2 \\
y^{t+1}=x^{t} / 10+1
\end{array}\right.
$$

```
Algorithm 1 Block Coordinate Descent
    Input: Given a initial starting point \(\mathbf{x}^{0}=\left(\mathbf{x}_{1}^{0}, \ldots, \mathbf{x}_{K}^{0}\right) \in \mathbb{R}^{n}\), and \(t=0\)
    for \(t=0,1, \ldots, T\) do
        for \(k=0,1, \ldots, K\) do
        Do (i) or (ii) or (iii) for Eq.(1).
        end for
    end for
    Output: \(x^{T}\).
```

$$
\begin{equation*}
\min _{\mathbf{x}} f(\mathbf{x})=f\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{K}\right)+\sum_{k=1}^{K} r_{k}\left(\mathbf{x}_{k}\right), \tag{1}
\end{equation*}
$$

Remark 1.2. - This algorithm is called "Block Coordinate Descent". If $K=n$, it also called "Coordinate Descent".

- This algorithm does not always convert to the optimal solution.
- The related convergence theory can be found in two review papers [Wri15, STXY16].

Example 1.3. (Group LASSO)

Suppose that $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{R}^{n}=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{K}\right)^{\top}$ and $\mathbf{z}_{k} \in \mathbb{R}^{n_{k}}, \sum_{k=1}^{K} n_{k}=n, A=\left[A_{1}, A_{2}, \ldots, A_{K}\right] \in$ $\mathbb{R}^{m \times n}$. Then Group LASSO is

$$
\min _{\mathbf{x}} \frac{1}{2}\|A \mathbf{x}-\mathbf{b}\|^{2}+\lambda \sum_{k=1}^{K}\left\|\mathbf{z}_{k}\right\|_{2}
$$

where $\left\|\mathbf{z}_{k}\right\|_{2}=\sqrt{\sum_{l=1}^{n_{k}} z_{k l}^{2}}$ This is equivalent to

$$
\begin{equation*}
\min _{\mathbf{x}} \frac{1}{2}\left\|\mathbf{b}-\sum_{k=1}^{K} A_{k} \mathbf{z}_{k}\right\|^{2}+\lambda \sum_{k=1}^{K}\left\|\mathbf{z}_{k}\right\|_{2} \tag{2}
\end{equation*}
$$

BCD algorithm: Given $\mathbf{z}_{2}^{t}, \ldots, \mathbf{z}_{K}^{t}$, then let $\mathbf{b}^{t}=\mathbf{b}-\sum_{k=2}^{K} A_{k} \mathbf{z}_{k}^{t}$. Then Eq.(2) is equivalent to

$$
\min _{\mathbf{z}_{1}} \frac{1}{2}\left\|\mathbf{b}^{t}-A_{1} \mathbf{z}_{1}\right\|^{2}+\lambda\left\|\mathbf{z}_{1}\right\|_{2}
$$

If $\mathbf{z}_{1} \neq 0$, then $-A_{1}^{\top}\left(\mathbf{b}^{t}-A_{1} \mathbf{z}_{1}\right)+\lambda \frac{\mathbf{z}_{1}}{\left\|\mathbf{z}_{1}\right\|_{2}}=0$, so,

$$
\mathbf{z}_{1}=\left(A_{1}^{\top} A_{1}+\frac{\lambda I}{\left\|\mathbf{z}_{1}\right\|_{2}}\right)^{-1} A_{1}^{\top} \mathbf{b}^{t}
$$

The iterative step is

$$
\mathbf{z}_{1}^{t+1} \leftarrow\left(A_{1}^{\top} A_{1}+\frac{\lambda I}{\left\|\mathbf{z}_{1}^{t}\right\|_{2}}\right)^{-1} A_{1}^{\top} \mathbf{b}^{t}
$$

If $\mathbf{z}_{1}=0$, then $0 \in \partial\left(\frac{1}{2}\left\|\mathbf{b}^{t}-A_{1} \mathbf{z}_{1}\right\|^{2}+\lambda\left\|\mathbf{z}_{1}\right\|_{2}\right)=-A_{1}^{\top} \mathbf{b}^{t}+\lambda s$, where $s \in \partial\|0\|_{2}=\left\{s \mid\|s\|_{2} \leqslant 1\right\}$.
Thus, $\left\|A_{1}^{\top} \mathbf{b}^{t}\right\| \leqslant \lambda$. Final update is

$$
\mathbf{z}_{1}^{t+1} \leftarrow \begin{cases}0, & \text { if }\left\|A_{1}^{\top} \mathbf{b}^{t}\right\| \leqslant \lambda \\ \left(A_{1}^{\top} A_{1}+\frac{\lambda I}{\left\|\mathbf{z}_{1}^{t}\right\|_{2}}\right)^{-1} A_{1}^{\top} \mathbf{b}^{t}, & \text { otherwise }\end{cases}
$$

Example 1.4. (K-means)
Suppose we have a data matrix $A_{m \times n}=\left(\mathbf{a}_{1}^{\top}, \ldots, \mathbf{a}_{m}^{\top}\right)^{\top}$. We introduce a corresponding binary indicator variable $r_{i k} \in\{0,1\}, i \in[m], k \in[K]$ to describe which of the k clusters the data point \mathbf{a}_{i} is assigned. If \mathbf{a}_{i} is assigned to cluster k, then $r_{i k}=1$, otherwise $r_{i k^{\prime}}=0, k^{\prime} \neq k$. Let μ_{k} be the mean vector of cluster k, then the objective function of K-means is

$$
\begin{equation*}
\min _{\mu_{k}, r_{i k}} \sum_{i=1}^{m} \sum_{k=1}^{K} r_{i k}\left\|\mathbf{a}_{i}-\mu_{k}\right\|^{2}=\ell(R, \mu) \tag{3}
\end{equation*}
$$

where R includes all the indicator variables and μ includes all μ_{k}.
K-means Algorithm:

- Fix $r_{i k}, \nabla_{\mu_{k}} \ell(R, \mu)=-2 \sum_{i=1}^{m} r_{i k}\left(\mathbf{a}_{i}-\mu_{k}\right)=0$, that is

$$
\mu_{k}=\frac{\sum_{i=1}^{m} r_{i k} \mathbf{a}_{i}}{\sum_{i=1}^{m} r_{i k}}
$$

- Fix μ_{k} then,

$$
r_{i k^{*}}= \begin{cases}1, & \text { if } k^{*}=\arg \min _{1 \leqslant k \leqslant K}\left\|\mathbf{a}_{i}-\mu_{k}\right\|^{2} \\ 0, & \text { otherwise }\end{cases}
$$

We further denote $H=\left(\mu_{1}^{\top}, \mu_{2}^{\top}, \ldots, \mu_{K}^{\top}\right)^{\top} \in \mathbb{R}^{K \times n}$ and $R=\left(r_{1}^{\top}, \ldots, r_{m}^{\top}\right)^{\top} \in \mathbb{R}^{m \times K}$, then the objective function of K-means can be reformulated as:

$$
\min _{R, H}\|A-R H\|_{F}^{2} .
$$

The K-means algorithm first fixes R to solve H, then fixes H to solve R respectively.

2 SVRG

How to reduce the variance of stochastic gradient? Let us consider an important method in the MCMC method. We try to estimate the unknown expectation $\overline{\mathbf{x}}$ of a random variable \mathbf{x} and that we have access to another random variable, \mathbf{z}, whose expectation $\overline{\mathbf{z}}$ is known. The the quantity $\mathbf{x}_{\mathbf{z}}=\mathbf{x}-\mathbf{z}+\overline{\mathbf{z}}$ has expectation $\overline{\mathbf{x}}$ and variance

$$
\begin{equation*}
V\left(\mathbf{x}_{\mathbf{z}}\right)=V(\mathbf{x})+V(\mathbf{z})-2 \operatorname{Cov}(\mathbf{x}, \mathbf{z}) \tag{4}
\end{equation*}
$$

where $V(\cdot)$ is the variance and $\operatorname{Cov}(\cdot, \cdot)$ is the covariance. Then $V\left[\mathbf{x}_{\mathbf{z}}\right]$ is lower than $V[\mathbf{x}]$ whenever \mathbf{z} is sufficiently positively correlated with \mathbf{x} and the variance reduction is larger when the control variate is more correlated with the random variable.

So what \mathbf{z} should we choose to reduce the variance of stochastic gradient estimation? That is

$$
\begin{equation*}
\widetilde{g}_{i}\left(\mathbf{x}_{t}\right)=g_{i}\left(\mathbf{x}_{t}\right)-z_{i}\left(\mathbf{x}_{t}\right)+\frac{1}{N} \sum_{j=1}^{N} \mathbf{z}_{j}\left(\mathbf{x}_{t}\right) \tag{5}
\end{equation*}
$$

Let us first refer to Algorithm 2.
Now we bound the variance of stochastic gradient.
Lemma 2.1. Denote that,

$$
\begin{equation*}
\mathbf{v}_{t}=\nabla f_{i_{t}}\left(\mathbf{x}_{t-1}\right)-\nabla f_{i_{t}}(\widetilde{\mathbf{x}})+\widetilde{\mathbf{z}} \tag{7}
\end{equation*}
$$

It holds that

$$
\begin{equation*}
\mathbb{E}\left\|\mathbf{v}_{t}\right\|^{2} \leqslant 4 L\left[f\left(\mathbf{x}_{t-1}\right)-f\left(\mathbf{x}^{*}\right)+f(\widetilde{\mathbf{x}})-f\left(\mathbf{x}^{*}\right)\right] \tag{8}
\end{equation*}
$$

Proof. Given any i, consider

$$
\begin{equation*}
h_{i}(\mathbf{x})=f_{i}(\mathbf{x})-f_{i}\left(\mathbf{x}^{*}\right)-\nabla^{\top} f_{i}\left(\mathbf{x}^{*}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right) \text {, Bregman divergence } \tag{9}
\end{equation*}
$$

```
Algorithm 2 SVRG
    Parameters update frequency \(T\) and learning rate \(\eta\)
    Initialize \(\widetilde{\mathbf{x}}_{0}\)
    for \(s=1,2, \ldots\) do
        \(\widetilde{\mathbf{x}}=\widetilde{\mathbf{x}}_{s-1}\)
        \(\widetilde{\mathbf{z}}=\frac{1}{m} \sum_{i=1}^{m} \nabla f_{i}(\widetilde{\mathbf{x}})\)
        \(x_{0}=\widetilde{\mathbf{x}}\)
        for \(t=1,2, \ldots, T\) do
Randomly pick \(i_{t} \in\{1, \ldots, m\}\) and update weight
\[
\begin{equation*}
\mathbf{x}_{t}=\mathbf{x}_{t-1}-\eta\left(\nabla f_{i_{t}}\left(\mathbf{x}_{t-1}\right)-\nabla f_{i_{t}}(\widetilde{\mathbf{x}})+\widetilde{\mathbf{z}}\right) \tag{6}
\end{equation*}
\]
end for
Set \(\widetilde{\mathbf{x}}_{s}=\mathbf{x}_{t}\) for randomly chosen \(t \in\{0, \ldots, T-1\}\)
end for
```

We know that $h_{i}\left(\mathbf{x}^{*}\right)=\min _{w} h_{i}(\mathbf{w})$ since $\nabla h_{i}\left(\mathbf{x}^{*}\right)=0$. Therefore

$$
\begin{align*}
0=h_{i}\left(\mathbf{x}^{*}\right) & \leqslant \min _{\eta}\left[h_{i}\left(\mathbf{x}-\eta \nabla h_{i}(\mathbf{x})\right)\right] \tag{10}\\
& \leqslant \min _{\eta}\left[h_{i}(\mathbf{x})-\eta\left\|\nabla h_{i}(\mathbf{x})\right\|^{2}+0.5 L \eta^{2}\left\|\nabla h_{i}(\mathbf{x})\right\|^{2}\right] \tag{11}\\
& =h_{i}(\mathbf{x})-\frac{1}{2 L}\left\|\nabla h_{i}(\mathbf{x})\right\|^{2} . \tag{12}
\end{align*}
$$

That is,

$$
\begin{equation*}
\left\|\nabla f_{i}(\mathbf{x})-\nabla f_{i}\left(\mathbf{x}^{*}\right)\right\|^{2} \leqslant 2 L\left(f_{i}(\mathbf{x})-f_{i}\left(\mathbf{x}^{*}\right)-\nabla^{\top} f_{i}\left(\mathbf{x}^{*}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right)\right) \tag{13}
\end{equation*}
$$

By summing the above inequality over $i=1, \ldots, n$, and using the fact that $\nabla f\left(\mathbf{x}^{*}\right)=0$, we obtain that

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n}\left\|\nabla f_{i}(\mathbf{x})-\nabla f_{i}\left(\mathbf{x}^{*}\right)\right\|^{2} \leqslant 2 L\left(f(\mathbf{x})-f\left(\mathbf{x}^{*}\right)\right) \tag{14}
\end{equation*}
$$

Let us denote

$$
\begin{equation*}
\mathbf{v}_{t}=\nabla f_{i_{t}}\left(\mathbf{x}_{t-1}\right)-\nabla f_{i_{t}}(\widetilde{\mathbf{x}})+\widetilde{\mathbf{z}} \tag{15}
\end{equation*}
$$

Conditioned on \mathbf{x}_{t-1}, we can take expectation with respect to i_{t}, and obtain that

$$
\begin{align*}
\mathbb{E}\left\|\mathbf{v}_{t}\right\|^{2} & \leqslant 2 \mathbb{E}\left\|\nabla f_{i_{t}}(\mathbf{x})-\nabla f_{i_{t}}\left(\mathbf{x}^{*}\right)\right\|^{2}+2 \mathbb{E}\left\|\left[\nabla f_{i_{t}}(\widetilde{\mathbf{x}})-\nabla f_{i_{t}}\left(\mathbf{x}^{*}\right)\right]-\nabla f(\widetilde{\mathbf{x}})\right\|^{2} \tag{16}\\
& =2 \mathbb{E}\left\|\nabla f_{i_{t}}(\mathbf{x})-\nabla f_{i_{t}}\left(\mathbf{x}^{*}\right)\right\|^{2}+2 \mathbb{E}\left\|\left[\nabla f_{i_{t}}(\widetilde{\mathbf{x}})-\nabla f_{i_{t}}\left(\mathbf{x}^{*}\right)\right]-\mathbb{E}\left[\nabla f_{i_{t}}(\widetilde{\mathbf{x}})-\nabla f_{i_{t}}\left(\mathbf{x}^{*}\right)\right]\right\|^{2} \tag{17}\\
& \leqslant 2 \mathbb{E}\left\|\nabla f_{i_{t}}(\mathbf{x})-\nabla f_{i_{i^{*}}}\left(\mathbf{x}^{*}\right)\right\|^{2}+2 \mathbb{E}\left\|\left[\nabla f_{i_{t}}(\widetilde{\mathbf{x}})-\nabla f_{i_{t}}\left(\mathbf{x}^{*}\right)\right]\right\|^{2} \tag{18}\\
& \leqslant 4 L\left[f\left(\mathbf{x}_{t-1}\right)-f\left(\mathbf{x}^{*}\right)+f(\widetilde{\mathbf{x}})-f\left(x^{*}\right)\right] \tag{19}
\end{align*}
$$

Theorem 2.2. The sequence $\left\{\widetilde{\mathbf{x}}_{s}\right\}$ in Algorithm 2 has the following property

$$
\begin{equation*}
\mathbb{E}\left[f\left(\widetilde{\mathbf{x}}_{s}\right)-f\left(\mathbf{x}^{*}\right)\right] \leqslant\left[\frac{1}{\mu \eta(1-2 L \eta) T}+\frac{2 L \eta}{1-2 L \eta}\right] \mathbb{E}\left[f\left(\widetilde{\mathbf{x}}_{s-1}\right)-f\left(\mathbf{x}^{*}\right)\right] \tag{20}
\end{equation*}
$$

Proof. By conditioning on \mathbf{x}_{t-1}, we have $\mathbb{E} \mathbf{v}_{t}=\nabla f\left(\mathbf{x}_{t-1}\right)$ and this leads to

$$
\begin{align*}
\mathbb{E}\left\|\mathbf{x}_{t}-\mathbf{x}^{*}\right\|^{2} & =\left\|\mathbf{x}_{t-1}-\mathbf{x}^{*}\right\|^{2}-2 \eta\left(\mathbf{x}_{t-1}-\mathbf{x}^{*}\right)^{\top} \mathbb{E} \mathbf{v}_{t}+\eta^{2} \mathbb{E}\left\|\mathbf{v}_{t}\right\|^{2} \tag{21}\\
& \leqslant\left\|\mathbf{x}_{t-1}-\mathbf{x}^{*}\right\|^{2}-2 \eta\left(\mathbf{x}_{t-1}-\mathbf{x}^{*}\right)^{\top} \nabla f\left(\mathbf{x}_{t-1}\right)+4 L \eta^{2}\left[f\left(\mathbf{x}_{t-1}\right)-f\left(\mathbf{x}^{*}\right)+f(\widetilde{\mathbf{x}})-f\left(\mathbf{x}^{*}\right)\right] \tag{22}\\
& =\left\|\mathbf{x}_{t-1}-\mathbf{x}^{*}\right\|^{2}-2 \eta(1-2 L \eta)\left[f\left(\mathbf{x}_{t-1}-f\left(\mathbf{x}^{*}\right)\right]+4 L \eta^{2}\left[f(\widetilde{\mathbf{x}})-f\left(\mathbf{x}^{*}\right)\right]\right. \tag{23}
\end{align*}
$$

We consider a fixed stage s, so that $\widetilde{\mathbf{x}}=\widetilde{\mathbf{x}}_{s-1}$ and $\widetilde{\mathbf{x}}_{s}$ is selected after all of the updates have completed. By summing the previous inequality over $t=1, \ldots, T$, taking expectation with all the history, we obtain that

$$
\begin{align*}
& \mathbb{E}\left\|\mathbf{x}_{T}-\mathbf{x}^{*}\right\|+2 \eta(1-2 L \eta) T \mathbb{E}\left[f\left(\widetilde{\mathbf{x}}_{s}-f\left(\mathbf{x}^{*}\right)\right]\right. \tag{24}\\
\leqslant & \mathbb{E}\left\|\mathbf{x}_{0}-\mathbf{x}^{*}\right\|^{2}+4 L T \eta^{2} \mathbb{E}\left[f(\widetilde{\mathbf{x}})-f\left(\mathbf{x}^{*}\right)\right] \tag{25}\\
= & \mathbb{E}\left\|\widetilde{\mathbf{x}}-\mathbf{x}^{*}\right\|^{2}+4 L T \eta^{2} \mathbb{E}\left[f(\widetilde{\mathbf{x}})-f\left(\mathbf{x}^{*}\right)\right] \tag{26}\\
\leqslant & \frac{2}{\mu} \mathbb{E}\left[f(\widetilde{\mathbf{x}})-f\left(x^{*}\right)\right]+4 L T \eta^{2} \mathbb{E}\left[f(\widetilde{\mathbf{x}})-f\left(\mathbf{x}^{*}\right)\right] \tag{27}\\
= & 2\left(\mu^{-1}+2 L T \eta^{2}\right) \mathbb{E}\left[f(\widetilde{\mathbf{x}})-f\left(\mathbf{x}^{*}\right)\right] \tag{28}
\end{align*}
$$

We thus obtain that

$$
\begin{equation*}
\mathbb{E}\left[f\left(\widetilde{\mathbf{x}}_{s}\right)-f\left(\mathbf{x}^{*}\right)\right] \leqslant\left[\frac{1}{\mu \eta(1-2 L \eta) T}+\frac{2 L \eta}{1-2 L \eta}\right] \mathbb{E}\left[f\left(\widetilde{\mathbf{x}}_{s-1}\right)-f\left(\mathbf{x}^{*}\right)\right] \tag{29}
\end{equation*}
$$

References

[STXY16] Hao-Jun Michael Shi, Shenyinying Tu, Yangyang Xu, and Wotao Yin. A primer on coordinate descent algorithms. arXiv preprint arXiv:1610.00040, 2016.
[Wri15] Stephen J Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3-34, 2015.

