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1 BCD

Example 1.1. Let us consider the problem
min f(x,y) = x* — 2xy + 10y* — 4x — 20y.

If we fix y, then V, f(x,y) = 2x — 4y — 4 = 0, that is x=y+2. If we fix x, then V,, f(x,y) = 20y —2x — 20 =0,
thatisy = x/10+ 1.

xt-l—l — yt +2,

Yyl =xt/10+ 1.

Algorithm 1 Block Coordinate Descent

1: Input: Given a initial starting point x0 = (x(l), e, x?() eR", andt =0

2: fort=20,1,...,Tdo
3 fork=0,1,...,Kdo
Do (i) or (ii) or (iii) for Eq.(1).

4

5.  end for
6: end for

7

: Output: x”.

K

mxinf(x) = flxu,x2, .., xk) + Y re(xk), (1)

k=1
Remark 1.2. e This algorithm is called “Block Coordinate Descent”. If K = n, it also called “Coordinate

Descent”.
 This algorithm does not always convert to the optimal solution.
o The related convergence theory can be found in two review papers [Wril5, STXY16].

Example 1.3. (Group LASSO)



Suppose that x = (x1,...,%,) " €R" = (zq,...,2k) " and z; € ]R”k,ZkK:1 ng =n,A=1[A1,Ay..., Ax] €
R™*", Then Group LASSO is

1 K
min o || Ax — blI>+A Y flzll2,

where [|z¢|]2 = /X%, 22, This is equivalent to

1 K K
min §||b— Y Az P+ A Y [lzi 2. )
k=1 k=1

BCD algorithm: Given zé, .. ZK, then let b’ = b — Zk 5 Akzk Then Eq.(2) is equivalent to
mi ! b — A 242
in — | 121]|7 + Az 2.
z] 2

Ifz; # 0, then —A] (b' — Ayz1) + )\szﬁ =0, so,

Al

(ATAl + — H e

)71A] b

The iterative step is

S AM

Z (A A+ ) LA Db

123 [l2
If z; = 0, then 0 € 3(3||b! — A121 % + Al|z1]]2) = —A] b! + As, where s € 9]|0[|» = {s]|s|]2 < 1}.

Thus, ||A{ b!|| < A. Final update is

0, if [A] bf|| < A
§+1 « 1

(Al A1+ AL)7TAT B!, otherwise.

[B tH
Example 1.4. (K-means)
T T

Suppose we have a data matrix A;x, = (a1 ,...,a,) . We introduce a corresponding binary indicator

variable r € {0,1},i € [m], k € [K] to describe which of the k clusters the data point a; is assigned. If a; is
assigned to cluster k, then r;; = 1, otherwise r;v = 0,k # k. Let yi; be the mean vector of cluster k, then the

objective function of K-means is

min} z ricllas — jel? = €(R ), ©)

Mtk ;7 1=

where R includes all the indicator variables and p includes all py.

K-means Algorithm:

e Fixry, Vi L(R,p) = =25 rig(a; — pg) = 0, that is

iy = YL Tikay
Yl Tik



e Fix py then,

1 if k* = arg min ||a; — 2
E g min [~ u?
ik* —
0, otherwise.

We further denote H = (y?,y;,...,‘u;(r)j— € RKX" and R = (r]—,...,r,—,';)—r e R™*K then the objective

function of K-means can be reformulated as:
min ||A — RH||%.
RH

The K-means algorithm first fixes R to solve H, then fixes H to solve R respectively.

2 SVRG

How to reduce the variance of stochastic gradient? Let us consider an important method in the MCMC
method. We try to estimate the unknown expectation x of a random variable x and that we have access to
another random variable, z, whose expectation z is known. The the quantity x, = x — z + Z has expectation

x and variance
V(xz) = V(x) + V(z) —2Cov(x, z) 4)

where V() is the variance and Cov (-, -) is the covariance. Then V[x;] is lower than V[x] whenever z is
sufficiently positively correlated with x and the variance reduction is larger when the control variate is more

correlated with the random variable.

So what z should we choose to reduce the variance of stochastic gradient estimation? That is
. 1 ¢
Si(xt) = gi(xt) — zi(x¢) + N Z;Zj(xt) (5)
j=
Let us first refer to Algorithm 2.

Now we bound the variance of stochastic gradient.

Lemma 2.1. Denote that,

vi = Vfi(x-1) = Vfi,(X) +2 @)
It holds that
E|[[vi|? <4AL[f(xi—1) = f(x*) + f(R) = F(x)] ®)
Proof. Given any i, consider
hi(x) = fi(x) = fi(x*) = VT fi(x*)(x — x*), Bregman divergence ©)



Algorithm 2 SVRG

Parameters update frequency T and learning rate i

Initialize X,

for s=1,2,... do

X =Xs-1
X0 =X

for t=1,2,...,Tdo
Randomly pick iy € {1,...,m} and update weight

xt =x-1— 1 (Vfi,(x—1) = V£, (X) +2) (6)

end for
Set Xs = x; for randomly chosen t € {0,..., T —1}

end for

We know that /;(x*) = ming, h;(w) since Vh;(x*) = 0. Therefore

0=h;(x*) < rr%in [hi(x —yVhi(x))] (10)
<min [1(x) = 7l| V()| +05Ly? | Vi ()| (an
=hi(x) = 57 A0 . 12)
That is,
IV£i00) = VAN < 2L(ix) ~ fi(x) = VT 6¢) (x = X)) (13)
By summing the above inequality over i = 1,.. ., 1, and using the fact that V f(x*) = 0, we obtain that
3 L1900 - VGO €200~ 1) (1)
Let us denote
Vi =Vfi(xi_1) — Vf;, (%) + Z (15)

Conditioned on x;_1, we can take expectation with respect to i;, and obtain that

E||vel|* 2|V f;, (x) = V£, ? + 2E[ [V f;, (%) = Vi, (x)] = VF)[I? (16)
=2E||Vf;, (x) = V£, * + 2E[ [V f;, (%) = V£, ()] = E[Vf;, &) = V£,O? - (17)
<2E||Vf, (x) = Vi, )|+ 2E[[V f;, (%) = Vi, <)][12 (18)
SAL[f (1) = fO) + f(X) = f(x7)] (19)

|



Theorem 2.2. The sequence {Xs} in Algorithm 2 has the following property

N . 1 2Ly
]E[f(xs) _f(x )] < .””7(1 _2L;7)T T 1—-2Ly

E[f(X—1) = f(x")] (20)

Proof. By conditioning on x;_1, we have Ev; = Vf(x;_1) and this leads to

Ellxi = x| =[xi-1 = x*|* = 27 (xi—1 = x*) "Evi + n’E|[v¢? 1)
Slxe—1 =X ? = 27 (xi—1 = x") TV f(xe-1) +4L72 [f(xi-1) = f(xX) + F(R) = F(x)] (22)
=lxe—1 = x1? = 27(1 = 2L [f (xe—1 = f(x*)] + AL [f (%) = f(x")] (23)

We consider a fixed stage s, so that X = X;_1 and X; is selected after all of the updates have completed. By

summing the previous inequality over t = 1,..., T, taking expectation with all the history, we obtain that

E|[xr —x*|| +25(1 — 2Ly) TE[f (X — f(x")] (24)
<Elx — x* |2 + 4LTHE[f(%) — f(x")] (25)
=E|[X = x*||> + 4LT’E[f (X) — f(x")] (26)
éi]E[f(i) — f(x)] + ALTHE[f (X) — f(x")] 27)
=2(u~" +2LTP)E[f(X) — f(x*)] (28)
We thus obtain that
E[f(X) — f(x)] < un (1 —12L17)T 1 ELZULW E[f(Xs-1) — f(x")] (29)
[ |
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