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1 BCD

Example 1.1. Let us consider the problem

min f (x, y) = x2 − 2xy + 10y2 − 4x− 20y.

If we fix y, then ∇x f (x, y) = 2x− 4y− 4 = 0, that is x=y+2. If we fix x, then ∇y f (x, y) = 20y− 2x− 20 = 0,

that is y = x/10 + 1.  xt+1 = yt + 2,

yt+1 = xt/10 + 1.

Algorithm 1 Block Coordinate Descent

1: Input: Given a initial starting point x0 = (x0
1, . . . , x0

K) ∈ Rn, and t = 0

2: for t = 0, 1, . . . , T do

3: for k = 0, 1, . . . , K do

4: Do (i) or (ii) or (iii) for Eq.(1).

5: end for

6: end for

7: Output: xT .

min
x

f (x) = f (x1, x2, . . . , xK) +
K

∑
k=1

rk(xk), (1)

Remark 1.2. • This algorithm is called “Block Coordinate Descent”. If K = n, it also called “Coordinate

Descent”.

• This algorithm does not always convert to the optimal solution.

• The related convergence theory can be found in two review papers [Wri15, STXY16].

Example 1.3. (Group LASSO)
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Suppose that x = (x1, . . . , xn)> ∈ Rn = (z1, . . . , zK)
> and zk ∈ Rnk , ∑K

k=1 nk = n, A = [A1, A2, . . . , AK] ∈

Rm×n. Then Group LASSO is

min
x

1
2
‖Ax− b‖2 + λ

K

∑
k=1
‖zk‖2,

where ‖zk‖2 =
√

∑nk
l=1 z2

kl This is equivalent to

min
x

1
2
‖b−

K

∑
k=1

Akzk‖2 + λ
K

∑
k=1
‖zk‖2. (2)

BCD algorithm: Given zt
2, . . . , zt

K, then let bt = b−∑K
k=2 Akzt

k. Then Eq.(2) is equivalent to

min
z1

1
2
‖bt − A1z1‖2 + λ‖z1‖2.

If z1 6= 0, then −A>1 (b
t − A1z1) + λ z1

‖z1‖2
= 0, so,

z1 = (A>1 A1 +
λI
‖z1‖2

)−1 A>1 bt.

The iterative step is

zt+1
1 ← (A>1 A1 +

λI
‖zt

1‖2
)−1 A>1 bt.

If z1 = 0, then 0 ∈ ∂( 1
2‖bt − A1z1‖2 + λ‖z1‖2) = −A>1 bt + λs, where s ∈ ∂‖0‖2 = {s|‖s‖2 6 1}.

Thus, ‖A>1 bt‖ 6 λ. Final update is

zt+1
1 ←


0, if ‖A>1 bt‖ 6 λ,

(A>1 A1 +
λI
‖zt

1‖2
)−1 A>1 bt, otherwise.

Example 1.4. (K-means)

Suppose we have a data matrix Am×n = (a>1 , . . . , a>m)>. We introduce a corresponding binary indicator

variable rik ∈ {0, 1}, i ∈ [m], k ∈ [K] to describe which of the k clusters the data point ai is assigned. If ai is

assigned to cluster k, then rik = 1, otherwise rik′ = 0, k′ 6= k. Let µk be the mean vector of cluster k, then the

objective function of K-means is

min
µk ,rik

m

∑
i=1

K

∑
k=1

rik‖ai − µk‖2 = `(R, µ), (3)

where R includes all the indicator variables and µ includes all µk.

K-means Algorithm:

• Fix rik, ∇µk`(R, µ) = −2 ∑m
i=1 rik(ai − µk) = 0, that is

µk =
∑m

i=1 rikai

∑m
i=1 rik

.
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• Fix µk then,

rik∗ =


1, if k∗ = arg min

16k6K
‖ai − µk‖2,

0, otherwise.

We further denote H = (µ>1 , µ>2 , . . . , µ>K )
> ∈ RK×n and R = (r>1 , . . . , r>m)> ∈ Rm×K, then the objective

function of K-means can be reformulated as:

min
R,H
‖A− RH‖2

F.

The K-means algorithm first fixes R to solve H, then fixes H to solve R respectively.

2 SVRG

How to reduce the variance of stochastic gradient? Let us consider an important method in the MCMC

method. We try to estimate the unknown expectation x̄ of a random variable x and that we have access to

another random variable, z, whose expectation z̄ is known. The the quantity xz = x− z + z̄ has expectation

x̄ and variance

V(xz) = V(x) + V(z)− 2Cov(x, z) (4)

where V(·) is the variance and Cov(·, ·) is the covariance. Then V[xz] is lower than V[x] whenever z is

sufficiently positively correlated with x and the variance reduction is larger when the control variate is more

correlated with the random variable.

So what z should we choose to reduce the variance of stochastic gradient estimation? That is

g̃i(xt) = gi(xt)− zi(xt) +
1
N

N

∑
j=1

zj(xt) (5)

Let us first refer to Algorithm 2.

Now we bound the variance of stochastic gradient.

Lemma 2.1. Denote that,

vt = ∇ fit(xt−1)−∇ fit(x̃) + z̃ (7)

It holds that

E‖vt‖2 6 4L[ f (xt−1)− f (x∗) + f (x̃)− f (x∗)] (8)

Proof. Given any i, consider

hi(x) = fi(x)− fi(x∗)−∇> fi(x∗)(x− x∗), Bregman divergence (9)
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Algorithm 2 SVRG

Parameters update frequency T and learning rate η

Initialize x̃0

for s = 1, 2, . . . do

x̃ = x̃s−1

z̃ = 1
m ∑m

i=1∇ fi(x̃)

x0 = x̃

for t = 1, 2, . . . , T do

Randomly pick it ∈ {1, . . . , m} and update weight

xt = xt−1 − η (∇ fit(xt−1)−∇ fit(x̃) + z̃) (6)

end for

Set x̃s = xt for randomly chosen t ∈ {0, . . . , T − 1}

end for

We know that hi(x∗) = minw hi(w) since ∇hi(x∗) = 0. Therefore

0 = hi(x∗) 6min
η

[hi(x− η∇hi(x))] (10)

6min
η

[
hi(x)− η‖∇hi(x)‖2 + 0.5Lη2‖∇hi(x)‖2

]
(11)

=hi(x)−
1

2L
‖∇hi(x)‖2. (12)

That is,

‖∇ fi(x)−∇ fi(x∗)‖2 6 2L( fi(x)− fi(x∗)−∇> fi(x∗)(x− x∗)) (13)

By summing the above inequality over i = 1, . . . , n, and using the fact that ∇ f (x∗) = 0, we obtain that

1
n

n

∑
i=1
‖∇ fi(x)−∇ fi(x∗)‖2 6 2L( f (x)− f (x∗)) (14)

Let us denote

vt = ∇ fit(xt−1)−∇ fit(x̃) + z̃ (15)

Conditioned on xt−1, we can take expectation with respect to it, and obtain that

E‖vt‖2 62E‖∇ fit(x)−∇ fit(x
∗)‖2 + 2E‖[∇ fit(x̃)−∇ fit(x

∗)]−∇ f (x̃)‖2 (16)

=2E‖∇ fit(x)−∇ fit(x
∗)‖2 + 2E‖[∇ fit(x̃)−∇ fit(x

∗)]−E[∇ fit(x̃)−∇ fit(x
∗)]‖2 (17)

62E‖∇ fit(x)−∇ fit(x
∗)‖2 + 2E‖[∇ fit(x̃)−∇ fit(x

∗)]‖2 (18)

64L[ f (xt−1)− f (x∗) + f (x̃)− f (x∗)] (19)

�
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Theorem 2.2. The sequence {x̃s} in Algorithm 2 has the following property

E[ f (x̃s)− f (x∗)] 6
[

1
µη(1− 2Lη)T

+
2Lη

1− 2Lη

]
E[ f (x̃s−1)− f (x∗)] (20)

Proof. By conditioning on xt−1, we have Evt = ∇ f (xt−1) and this leads to

E‖xt − x∗‖2 =‖xt−1 − x∗‖2 − 2η(xt−1 − x∗)>Evt + η2E‖vt‖2 (21)

6‖xt−1 − x∗‖2 − 2η(xt−1 − x∗)>∇ f (xt−1) + 4Lη2[ f (xt−1)− f (x∗) + f (x̃)− f (x∗)] (22)

=‖xt−1 − x∗‖2 − 2η(1− 2Lη)[ f (xt−1 − f (x∗)] + 4Lη2[ f (x̃)− f (x∗)] (23)

We consider a fixed stage s, so that x̃ = x̃s−1 and x̃s is selected after all of the updates have completed. By

summing the previous inequality over t = 1, . . . , T, taking expectation with all the history, we obtain that

E‖xT − x∗‖+ 2η(1− 2Lη)TE[ f (x̃s − f (x∗)] (24)

6E‖x0 − x∗‖2 + 4LTη2E[ f (x̃)− f (x∗)] (25)

=E‖x̃− x∗‖2 + 4LTη2E[ f (x̃)− f (x∗)] (26)

6
2
µ

E[ f (x̃)− f (x∗)] + 4LTη2E[ f (x̃)− f (x∗)] (27)

=2(µ−1 + 2LTη2)E[ f (x̃)− f (x∗)] (28)

We thus obtain that

E[ f (x̃s)− f (x∗)] 6
[

1
µη(1− 2Lη)T

+
2Lη

1− 2Lη

]
E[ f (x̃s−1)− f (x∗)] (29)
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